高职单招网欢迎您!
首页 重庆 四川 湖南 福建 河南 广东 湖北 江苏 浙江 山东 安徽 海南 江西 广西 北京 天津 河北 山西 辽宁 吉林 上海 贵州 云南 新疆 陕西 甘肃 青海 宁夏 黑龙江 西藏 内蒙古
您当前位置:山西单招网>>单招试题>>单招语文>>文章详情

2013山西高考数学文试卷

来源:互联网

时间:2014-03-14

阅读数:538

扫码关注高职单招网

扫码关注大先生教育

绝密★启封并使用完毕前
2013年普通高等学校招生全国统一考试
文科数学
本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。第Ⅰ卷12页,第Ⅱ卷34页。全卷满分150分。考试时间120分钟。
注意事项:
1. 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。第Ⅰ卷13页,第Ⅱ卷35页。
2. 答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置。
3. 全部答案在答题卡上完成,答在本试题上无效。
4. 考试结束,将本试题和答题卡一并交回。
第Ⅰ卷
一、 选择题共8小题。每小题5分,共40分。在每个小题给出的四个选项中,只有一项是符合题目要求的一项。
(1)已知集合A={1,2,3,4},B={x|x=n2,n∈A},则A∩B= ( )
(A){0} (B){-1,,0} (C){0,1} (D){-1,,0,1}
(2) = ( )
(A)-1 - i (B)-1 + i (C)1 + i (D)1 - i
(3)从1,2,3,4中任取2个不同的数,则取出的2个数之差的绝对值为2的概率是 ( )
(A) (B) (C) (D)
(4)已知双曲线C: = 1(a>0,b>0)的离心率为 ,则C的渐近线方程为 ( )
(A)y=± x (B)y=± x (C)y=± x (D)y=±x
(5)已知命题p: ,则下列命题中为真命题的是: ( )
(A) p∧q (B)¬p∧q (C)p∧¬q (D)¬p∧¬q
(6)设首项为1,公比为 的等比数列{an}的前n项和为Sn,则 ( )
(A)Sn =2an-1 (B)Sn =3an-2 (C)Sn =4-3an (D)Sn =3-2an

(7)执行右面的程序框图,如果输入的t∈[-1,3],则输出的s属于
(A)[-3,4]
(B)[-5,2]
(C)[-4,3]
(D)[-2,5]
(8)O为坐标原点,F为抛物线C:y=4 x的焦点,P为C上一点,若丨PF丨=4 ,则△POF的面积为
(A)2 (B)2 (C)2 (D)4
(9)函数f(x)=(1-cosx)sinx在[-π,π]的图像大致为

(10)已知锐角△ABC的内角A,B,C的对边分别为a,b,c,23cosA+cos2A=0,a=7,c=6,则b=
(A)10 (B)9 (C)8 (D)5





(11)某几何函数的三视图如图所示,则该几何的体积为
(A)18+8π (B)8+8π
(C)16+16π (D)8+16π


(12)已知函数f(x)= 若|f(x)|≥ax,则a的取值范围是
(A)(-∞] (B)(-∞] (C)[-2,1] (D)[-2,0]
第Ⅱ卷
本卷包括必考题和选考题两个部分。第(13)题-第(21)题为必考题,每个考生都必须作答。第(22)题-第(24)题为选考题,考生根据要求作答。
二.填空题:本大题共四小题,每小题5分。
(13)已知两个单位向量a,b的夹角为60°,c=ta+(1-t)b,若b·c=0,则t=_____.
(14)设x,y满足约束条件 ,则z=2x-y的最大值为______.
(15)已知H是求O的直径AB上一点,AH:HB=1:2,AB⊥平面a,H为垂足,a截球o所得截面的面积为π,则求o的表面积为_______.
(16)设当x=θ时,函数f(x)=sinx-2cosx取得最大值,则cosθ=______.
三.解答题:解答应写出文字说明,证明过程或演算步骤。
(17)(本小题满分12分)
已知等差数列{an}的前n项和Sn满足S3=0,S5=-5.
(Ⅰ)求{an}的通项公式;
(Ⅱ)求数列 的前n项和


18(本小题满分共12分)
为了比较两种治疗失眠症的药(分别成为A药,B药)的疗效,随机地选取20位患者服用A药,20位患者服用B药,这40位患者服用一段时间后,记录他们日平均增加的睡眠时间(单位:h)实验的观测结果如下:
服用A药的20位患者日平均增加的睡眠时间:
0.6 1.2 2.7 1.5 2.8 1.8 2.2 2.3 3.2 3.5
2.5 2.6 1.2 2.7 1.5 2.9 3.0 3.1 2.3 2.4
服用B药的20位患者日平均增加的睡眠时间:
3.2 1.7 1.9 0.8 0.9 2.4 1.2 2.6 1.3 1.4
1.6 0.5 1.8 0.6 2.1 1.1 2.5 1.2 2.7 0.5


19.(本小题满分12分)
如图,三棱柱ABC-A1B1C1中,CA=CB,AB=A A1,∠BA A1=600.

(Ⅰ)证明AB⊥A1C;
(Ⅱ)若AB=CB=2, A1C= ,求三棱柱ABC-A1B1C1的体积


(20)(本小题满分共12分)
已知函数f(x)=ex(ax+b)-x2-4x,曲线y=f(x)在点(0,f(0))处切线方程为
y=4x+4
(Ⅰ)求a,b的值
(Ⅱ)讨论f(x)的单调性,并求f(x)的极大值




(21)(本小题满分12分) 已知圆M:(x+1)2+y2=1,圆N:(x+1)2+y2=9,动圆P与M外切并且与圆N内切,圆心P的轨迹为曲线 C. (Ⅰ)求C得方程; (Ⅱ)l是与圆P,圆M都相切的一条直线,l与曲线C交于A,B两点,当圆P的半径最长是,求|AB|.



(10)已知锐角△ABC的内角A,B,C的对边分别为a,b,c,23cosA+cos2A=0,a=7,c=6,则b=
(A)10 (B)9 (C)8 (D)5

请考生在第(22)、(23)、(24)三题中任选一题作答。注意:只能做所选定的题目。如果多做,则按所做的第一个题目计分,作答时请用2B铅笔在答题卡上将所选题号后的 方框涂黑。
(22)(本小题满分10分)选修4—1:几何证明选讲 如图,直线AB为圆的切线,切点为B,点C在圆上,∠ABC的角平分线BE交圆于点E,DB垂直BE交圆于D。

(Ⅰ)证明:DB=DC;
(Ⅱ)设圆的半径为1,BC= ,延长CE交AB于点F,求△BCF外接圆的半径。

(23)(本小题10分)选修4—4:坐标系与参数方程 已知曲线C1的参数方程为x=4+5cost,y=5+5sint,(t为参数),以坐标原点为极点,x轴的正半轴为极轴简历极坐标系,曲线C2的极坐标方程为ρ=2sinθ。
(Ⅰ)把C1的参数方程化为极坐标方程;
(Ⅱ)求C1与C2交点的极坐标(ρ≥0,0≤θ<2π)。

(24)(本小题满分10分)选修4—5:不等式选讲
已知函数f(x)= ∣2x-1∣+∣2x+a∣,g(x)=x+3.
(Ⅰ)当a=2时,求不等式f(x) <g(x)的解集;
(Ⅱ)设a>-1,且当x∈[- , )时,f(x) ≤g(x),求a的取值范围.
免责声明:本文系本网编辑转载,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责。如涉及作品内容、版权和其它问题,请在30日内与本网联系,我们将在第一时间删除内容,联系电话:023-88190008!

想对作者说点什么?

我来说一句

请先登录

相关新闻

山西单招网合作热线

400-0509-023

周一至周日:9:00-21:00

高职单招网新浪博客

立即关注

2013-2019 山西单招网, All Rights Reserved. | 渝ICP备16012042号-2 | 渝公网备 50011202500631号

公司地址:重庆市渝北区嘉州协信中心B栋9层(重庆教育考试院旁)| 广告投放:15023308442(曾老师) |合作加盟:15025359797(刘老师)

×
  • 真实姓名:
  • 手机号码:
  • 意向学校:
  • 意向专业:
  • 邀答数量:
  • 毕业学校
  • QQ号码: